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Introduction

Faecalibacterium prausnitzii is a member of the phylum 
Firmicutes and a major component of human microbiota, but 
was first described only recently.1 It has been the subject of few 
studies, partly because it is an extremely oxygen-sensitive (EOS) 
bacterium.1 It is an atypical bacterium that has been difficult 
to classify in the bacterial nomenclature.1 Analysis of the  
F. prausnitzii membrane suggests that this bacterium either lacks 
cell wall lipopolysaccharides (LPS) or displays an unusual LPS 
composition.2 Over the last ten years, there has been substantial 
interest in F. prausnitzii in the microbiota of patients with 
intestinal and metabolic disorders, and particularly Inflammatory 
Bowel Disease (IBD) patients. These diseases are characterized 
by a dysbiosis, or in other words microbial imbalance (between 
“symbionts” and “pathobionts”), in the gut.3 The Firmicutes-
Bacteroidetes ratio is commonly affected with a decrease of  
F. prausnitzii population in such patients.4 Recent studies report 
an association between low F. prausnitzii population levels and 
the risk of relapse in IBD. In ulcerative colitis (UC) patients, 
there is a clear correlation between F. prausnitzii population 
level and maintenance of clinical remission.5 Similarly, in Crohn 
disease (CD) patients, a low relative count of this bacterium is risk 

factor for endoscopic recurrence within 6 months.6 Interestingly, 
F. prausnitzii has immunomodulatory properties and is now 
considered as both an indicator of, and an actor in, human health 
in adults.7 Although there have been various suggestions for the 
mechanisms involved, the role of F. prausnitzii in host immune 
responses is poorly understood. Human F. prausnitzii strains 
have been classified into two different molecular phylogroups, 
but no functional specificities have been linked to these 
phylogroups (Fig. 1).8 Genomic data generated by microbiota 
metagenome projects will undoubtedly improve our knowledge 
of non-cultivable and difficult to cultivate strains. It may also 
be very informative to study the anti-inflammatory activities 
and molecular phylogroups of strains isolated from IBD patients 
and compare them to those of strains isolated from healthy 
individuals.

The role of F. prausnitzii in the homeostasis of the crosstalk 
between host and microbiota is unlikely to be restricted to its 
anti-inflammatory potential.6 Indeed, the biological effects 
of F. prausnitzii may be also linked to its localization in the 
gastrointestinal tract (GIT), its metabolic activities, and its 
complementarities with other bacteria of the microbiota. In this 
review, we consider where and when F. prausnitzii may affect 
host physiology. Various unresolved questions that we believe 
important are listed in Figure 1. We also propose an approach to 
develop a novel personalized treatment strategy based on using 
medicine and nutrition to modulate the F. prausnitzii population.

F. prausnitzii: A Late  
but Major Commensal Colonizer of the GIT

F. prausnitzii is usually described as an EOS bacterium but is 
able to grow in micro-aerobic conditions by using extracellular 
electron transfer in the presence of flavins and cysteine or 
glutathione.1,9 This capacity may explain how such anaerobic 
bacteria could colonize niches, including the gut mucosa, where 
there is an oxygen gradient.9,10 Nevertheless, it is difficult to 
cultivate F. prausnitzii, and various molecular approaches have 
been used to evaluate F. prausnitzii populations: (1) detection of 
16S rRNA gene sequences,11,12 (2) PCR techniques based on single 
primers,13,14 (3) assaying 16S RNA by membrane-array methods15 
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Faecalibacterium prausnitzii is a major commensal 
bacterium, and its prevalence is often decreased in conditions 
of intestinal dysbiosis. The phylogenic identity of this bacterium 
was described only recently. It is still poorly characterized, and 
its specific growth requirements in the human gastrointestinal 
tract are not known. In this review, we consider F. prausnitzii 
metabolism, its ecophysiology in both humans and animals, 
and the effects of drugs and nutrition on its population. we 
list important questions about this beneficial and ubiquitous 
commensal bacterium that it would be valuable to answer.
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or hybridization techniques, and 
(4) in situ hybridization.16,17 F. 
prausnitzii DNA was found in the 
recently described metagenome 
catalog and is now considered to be 
a major member of the phylogenetic 
core.18,19 The abundance and 
ubiquity of F. prausnitzii suggest 
that it is a major contributor to 
microbiota functions in healthy 
individuals. It is therefore 
important to determine both the 
kinetics of its implantation and its 
localization in the GIT.

Temporal colonization in 
humans (Fig. 2)

Although F. prausnitzii is 
dominant in healthy adults, its 
population in the intestine is modulated by diverse factors. A 
recent study suggests that the amount of F. prausnitzii in the 
gut microbiota depends on the sex of the host: there is less in 
human females than males (female to male ratio: 0.41, P ⩽ 0.05  
as evaluated from gut microbiota DNA).20 Several reports 
indicate that the populations of this bacterium change with age. 
The amount of F. prausnitzii-specific RNA in stools from babies 
up to the age of 6 months is below the detection threshold; the 
value then increases between ages 6 and 24 months but remains 
low until early childhood (2–3 years).21-24 In elderly persons, 
there is a significant decrease of F. prausnitzii to 0.3%.25 The low  
F. prausnitzii populations in early infancy suggest that the arrival 
of initial colonizers may facilitate subsequent implantation of 
F. prausnitzii. Possibly, consumption of the available oxygen by 
facultative anaerobic bacteria is required to generate an anaerobic 
environment favorable for the growth of obligatory anaerobic 
bacteria such as F. prausnitzii.26 The implantation of EOS 
bacteria and specifically F. prausnitzii depends on the physico-
chemical conditions previously created by other commensal 
bacteria.27 Rezzonico et al. found that after inoculation of 
germ-free mice with a simplified human microbiota, all tested 
strains were systematically detected in all animals except for 
the reference strain of F. prausnitzii A2–165 (DSM17677).28 In 
these experiments, all bacteria were introduced at the same time, 
and this did not allow efficient implantation of F. prausnitzii. A 
recent study describes F. prausnitzii in mono-colonized recipient 
germ-free mice,29 but we have been unable to obtain rats mono-
colonized by F. prausnitzii: prior colonization by Bacteroides 
thetaiotaomicron was required for robust implantation of  
F. prausnitzii in a rat model.30 After 4 weeks of 
preparation of the GIT by B. thetaiotaomicron, a stable 
balance was maintained between the two bacteria, with  
B. thetaiotaomicron counts remaining 100-fold higher than F. 
prausnitzii counts.30 These investigations with various rodent 
models maintained in germ-free conditions suggested that 
oxygen tension is an important determinant of colonization of 
the gut by F. prausnitzii. According to the “oxygen hypothesis” 
proposed by Rigottier-Gois,31 oxygen is a major factor shaping 

patterns of colonization by EOS gut microbes. These observations 
provide insights into mechanisms governing microbial ecology 
and processes of colonization; they also raise questions about the 
ecological niche of the various strains outside the GIT (Fig. 1).

Colonization along the human GIT
F. prausnitzii implantation varies along the GIT, with a 

significantly higher population in the proximal colon than in 
the terminal ileum,32 and few differences have been observed 
between the numbers of this organism in different parts of the 
large bowel. Relatively little is known about the interaction of 
F. prausnitzii with the mucus layer produced by the intestinal 
epithelium. Because of its distribution in the GIT, F. prausnitzii 
has been called a “fecomucus” bacterium: the highest 
concentration is in feces, and it is less abundant but detectable 
in mucus.33,34 F. prausnitzii can survive in the adjacent mucosa 
where there is an oxygen influx from the gut epithelium. Inside 
the gut, its growth and survival (at the oxygenated fecal-mucosal 
interface) seems to depend on extracellular redox mediators 
such as flavin.9,10 Thus, the distribution of F. prausnitzii along 
the longitudinal and luminal axes of the gut are determined by 
a combination of several environmental factors, including the 
distribution of redox mediators, oxygen concentration, other 
bacteria, the mucus layer, bile salt concentrations, and pH.8,35 
In rats, F. prausnitzii implantation is in part dependent on the 
same factors and it contributes to intestinal homeostasis mainly 
through effects on cell differentiation, and especially that of cells 
of the secretory lineage.30 A better understanding is required of 
the environmental factors allowing the survival and the growth 
of F. prausnitzii in the gut (Fig. 1).

F. prausnitzii in animal intestinal microbiota
F. prausnitzii is widely distributed in the GIT of mammals. 

Interestingly, in pigs, FISH analyses showed that the localization 
of F. prausnitzii-related bacteria is very similar to that in humans. 
It is abundant in the hind gut (proximal colon 2 ± 0.5% and rectum 
2.4 ± 0.7% of dominant bacteria) but was below the detection 
threshold in both the stomach and jejunum.36 F. prausnitzii has 
been detected in the microbiota of pigs and piglets,37,38 calves,39 
poultry including chickens and turkeys,40-46 and mice.47 Most 

Figure 1. Main questions still unresolved about F. prausnitzii.
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of these strains share less than 97% sequence identity with 
the human strain in the 16S rRNA gene and are thus named 
F. prausnitzii-like strains.36,40-42 They are predominant bacteria 
in the intestines of many mammals and also in some insects. 
Indeed, under its initial name of Fusobacterium prausnitzii,  
F. prausnitzii has been found in the hind gut of the cockroach 
Eublaberus posticus.48 These descriptions have led some authors 
to suggest that each animal species has its own distinctive set of 
phylotypes related to F. prausnitzii in its GIT.41

What is Known about F. prausnitzii Metabolism?

Human F. prausnitzii has been considered to be “a key 
functional member of the core microbiome that most influences 
host metabolism and hence health”.49 This role is in part due to 
F. prausnitzii being one of the most abundant of the butyrate-
producing bacteria in the GIT. However, it is not known whether 
it is the major butyrate producer of the intestinal microbiota. 
Butyrate is a short chain fatty acid (SCFA) and very important in 
gut physiology and in the systemic functions and beneficial effects 
of the gut microbiota for human health.50 Analysis of SCFAs 
pattern in stools from CD patients shows higher than normal 
proportions of acetate (70%) and low proportions of propionate 
and butyrate (14.9% and 7.99%, respectively).51 However, it is not 
yet clear whether the production of butyrate by F. prausnitzii is 
directly linked to host responsiveness or health benefits. It would 
be informative to construct F. prausnitzii mutants defective for 
butyrate synthesis and use them to evaluate the effect of butyrate 
produced directly in situ by F. prausnitzii (Fig. 1). The metabolic 
activity of F. prausnitzii is not restricted to the production of 
butyrate, and its potential for immunomodulation is also linked 
to other molecules and/or metabolites, but they have not yet been 
characterized (Fig. 1).6

The production of SCFA by F. prausnitzii was described in 
vitro for the first time by using a complex rumen fluid-based 
medium in strict anaerobic conditions.52 F. prausnitzii is an 

acetate consumer and butyrate producer, and it can also produce 
carbon dioxide, formate, and D-lactate, although none of the 
strains isolated to date produce hydrogen.1,53 In batch cultures, 
most of the carbon in the butyrate produced (around 85%) is 
derived from external acetate, with only 15% provided directly 
from glucose.54 In 2002, Duncan et al.55 detected a Butyryl 
CoA:acetate CoA transferase in the F. prausnitzii reference strain 
A2-165 in which no butyrate kinase activity was found. In the 
human GIT, F. prausnitzii produces butyrate associated with a 
consumption of both acetate and carbohydrates.52,54 Moreover,  
F. prausnitzii strains can hydrolyze fructose, fructo-
oligosaccharide, apple pectin, and starch, and some can 
hydrolyze inulin.1,8,56 None of the strains isolated to date are 
able to exploit as sole energy source any of arabinose, melibiose, 
raffinose, rhamnose, ribose, xylose, linear and α-1,2-branched 
dextrans, arabinogalactan, xylan, citrus pectin, or peptides.1,8,57 
Most F. prausnitzii strains can grow on the host-derived sugar 
N-acetylglucosamine and some strains on D-glucosamine and 
D-glucuronic acid; B-glucuronidase activity has been reported 
in some F. prausnitzii isolates.8,58 This suggests that F. prausnitzii 
is able to switch from diet- to host-derived substrates, a feature 
common to several major bacterial species in the human 
colon.59,60 No evidence has been found of porcine gastric mucin 
fermentation by F. prausnitzii.8 No minimal medium has yet 
been described for F. prausnitzii growth although some strains 
are able to grow on simplified medium containing acetate.1 
The analysis of the metabolomic profiles of a large collection of 
strains isolated from both healthy subjects and patients suffering 
disease-associated dysbiosis would be very useful, in particular to 
document the metabolic activity of F. prausnitzii.

How Medicines and Nutrition May Modulate  
F. prausnitzii Population and Activity

Various treatments used for IBD patients, such as rifaximin,61 
interferon-α-2b,62 cortisol, and infliximab,33 have been shown 
to have a positive effect on the F. prausnitzii population in the 
microbiota. However, there is published evidence that a large 
number of xenobiotics may decrease the F. prausnitzii population 
in the microbiota. Antibiotic therapy, chemotherapy, isoflavones, 
and essential oils markedly decrease the richness of species of 
the Clostridium cluster IV and significantly reduce F. prausnitzii 
populations.63-66

The metabolism of colonic bacteria depends largely on fibers 
that are not digested by human enzymes in the upper GIT. Work 
with fiber-free and fiber-supplemented liquid diets found that  
F. prausnitzii populations and fecal butyrate correlate with the 
fiber input.67 In vitro conditions mimicking those of the proximal 
colon show that high levels of dietary fiber significantly increased 
clostridial cluster XIVa and F. prausnitzii populations.68 Other 
specific diets, like a raffinose diet, a chickpea diet, and a novel 
diet based on fibers such as polydextrose and soluble corn fiber, 
can increase F. prausnitzii abundance.69,70 Diet may affect  
F. prausnitzii populations directly or indirectly by enhancing 
metabolite cross-feeding between microbes. The benefits of fiber 
intake have been demonstrated in a murine model of IBD, and 

Figure  2. Kinetics of implantation of F. prausnitzii. Changes in human 
fecal F. prausnitzii populations with host age (adapted from Hopkins et 
al., Balamurugan et al. and Van Tongeren et al.).21,22,25
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this work also suggested a link between fiber and F. prausnitzii 
levels.71 However, elemental diet therapy (nutrients in an easily 
assimilated form essentially composed of amino acids, fats, 
sugars, vitamins, and minerals), used mainly in the treatment of 
CD patients may decrease fecal F. prausnitzii counts.72 In fact, 
this type of diet permits only very small amounts of undigested 
food residues, and such residues are required for normal levels of 
microorganisms in the lower gut.

The effects of prebiotics, such as inulin, on bifidogenic 
and butyrogenic bacteria are well established. The inclusion 
of inulin-type fructans in the diet of obese women may affect 
the gut microbiota, including increases in the populations of  
F. prausnitzii species, and thereby may have a significant impact 
on several key metabolites involved in obesity and/or diabetes.73 
The intake of 10 g/day inulin over a 16-day period resulted 
in specific and significant modifications of the composition 
of the human microbiota characterized by an increase in both 
Bifidobacterium and F. prausnitzii.74,75 Moreover, in vitro 
experiments showed that some exopolysaccharides produced by 
Bifidobacterium pseudocatenulatum, a human intestinal strain of 
Bifidobacteria, could increase the prevalence of F. prausnitzii.76 
Similarly, a human study showed that B. longum BB536 intake 
(13 weeks treatment) enhanced F. prausnitzii 16S rRNA gene 
copy numbers in Japanese individuals with cedar pollinosis.77 
This is consistent with a putative symbiotic cooperation or cross 
feeding between F. prausnitzii and microbes generally recognized 
as beneficial, such as Bifidobacterium and Lactobacillus spp.45,46 
For instance, Bifidobacteria are acetate producers in the gut, and 
one possible approach to increase the F. prausnitzii population is 
to feed Bifidobacteria, which then feed F. prausnitzii by producing 
acetate. However, the effects of probiotics are strain-specific. 
Indeed, a recent study has demonstrated that the intake of 
Lactobacillus johnsonii strain La1 by healthy volunteers decreased 
F. prausnitzii levels.78

The consumption of some prebiotics or probiotics could 
enhance the concentrations of beneficial species and especially 
F. prausnitzii in the GIT. This type of approach is promising 
for patients with intestinal disorders, although relevant clinical 
trials performed to date included only small numbers of subjects 
and lack statistical power. We believe that it is likely that 
therapeutic strategies will need to be individually adapted to 

the findings of microbiota analysis, as proposed by Swidsinski33 
(Fig. 1).

Conclusion

F. prausnitzii is a commensal bacterium; it is a major member 
of adult human microbiota and is also found in most animals. The 
time course of F. prausnitzii colonization has been described, but 
many questions about the specificity of the conditions required 
for its implantation have not been answered. The ubiquity and 
population level of F. prausnitzii and its frequent involvement 
in dysbiosis indicate that this bacterium is a major contributor 
to the functions of the microbiota and intestinal health. 
Modulation of F. prausnitzii populations may be useful for 
preventive or therapeutic treatments. However, it is still not clear 
how to treat and/or prevent IBD associated with F. prausnitzii 
dysbiosis, and it may be necessary to establish a personal 
diagnosis for each patient, based on microbiota analysis, to allow 
appropriate management (Fig. 1). Treatments complementary to 
standard therapy should be investigated, involving, for example, 
various nutritional strategies or prebiotics or probiotics that 
favor F. prausnitzii population expansion. Further research, 
and in particular work to elucidate the mutualistic interactions 
between F. prausnitzii and the host, may lead to valuable medical 
applications (Fig. 1).
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